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Abstract

Forecast combinations have been repeatedly shown to outperform individual professional forecasts and complicated time series
models in accuracy. Their ease of use and accuracy makes them important tools for policy decisions. While simple combinations
work remarkably well in some situations, time-varying combinations can be even more accurate in other real-life scenarios in-
volving economic forecasts. This paper uses a regime switching framework to model the time-variation in forecast combination
weights. | use an optimization problem based on asymmetric loss functions in deriving optimal forecast combination weights.
The switching framework is based on the work of Elliott and Timmermann (2005), however | extend their setup by using asym-
metric quadratic loss in the optimization problem. This is an important extension, since with my setup it is possible to quantify
and analyze optimal forecast biases for different directions and levels of asymmetry in the loss function, contributing to the
vast literature on forecast bias. | interpret the equations for the optimal weights through analytical examples and examine how
the weights depend on the model parameters, the level of asymmetry of the loss function and the transition probabilities and
starting state.

JEL: C53.

Keywords: Forecast combination, Loss functions, Time-varying combination weights, Markov switching.

Osszefoglalé

A kombinalt el6rejelzések gyakran pontosabbnak bizonyulnak mind az egyedi szakértGi elérejelzéseknél, mind a bonyolult id6-
soros modellek predikciéinal. Egyszerd haszndlatuk és pontossaguk miatt a dontéshozdk szamdra is fontos eszk6zok lehetnek.
Mig bizonyos el6rejelzési helyzetekben az egyszer(, statikus kombinaciok is jol teljesitenek, egyéb életszer(i gazdasagi szitua-
cidkban az idében valtozd kombinacids sulyok adnak pontosabb predikcidt. Ebben a tanulmanyban valtozé rezsimek feltéte-
lezése mellett modellezem az elGrejelzési kombinacios sulyok id6beli alakuldsat. A kombinacids sulyok kiszamitasara hasznalt
optimalizacids problémaban emellett aszimmetrikus veszteségfliggvényeket feltételezek. A felhasznalt rezsimvalté modell Elli-
ott és Timmermann (2005) munkajan alapul, azonban modelljiiket kiterjesztem aszimmetrikus négyzetes veszteségfliggvények
haszndlatara. Tanulmanyom az el6rejelzési torzitas irodalmahoz is jelent6sen hozzajarul, hiszen a hasznalt dltalanosabb ke-
retben szdmszerdsithetd és vizsgalhatd az elGrejelzési torzitas optimalis mértéke a veszteségfliggvény kiilonboz6 mértékdl és
irdnyu aszimmetridja esetén. Analitikus példadkon keresztll értelmezem az optimdlis sulyokat meghatarozé egyenleteket, és
megmutatom, hogyan fliggnek a sulyok a modellparaméterektél, a veszteségfliggvény aszimmetridjanak szintjétdl, valamint a
rezsimvalto folyamat kezd§ szintjétdl és dtmeneti valdszinlségeitdl.
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1 Introduction

Forecast combinations have been repeatedly shown to outperform individual professional forecasts and complicated time se-
ries models in accuracy. Since the seminal paper of Bates and Granger (1969) that introduced optimal forecast combinations,
many works have shown the theoretical and empirical benefits of using combined forecasts (see, among others the papers by
Clemen (1989), Diebold and Lopez (1996), Chan et al. (1999), Dunis et al. (2000), Stock and Watson (1998, 1999), Timmermann
(2006), Diebold-Shin (2019)). These benefits include diversification gains from combining forecasts whose forecast errors are
not perfectly correlated with one another, approximating reality with many models of different nature that are not encom-
passed by one complicated model and the ease of combination versus using a highly complex forecasting model (Elliott and
Timmermann (2005)).

While simple combinations work remarkably well in some situations, time-varying combinations can be even more accurate in
other real-life scenarios involving economic forecasts. The ranking of individual models according to accuracy is likely to change
over time, as shown by Stock and Watson (2003) and Aiolfi and Timmermann (2004), among others. One forecast might be
the most accurate in a period of high economic growth, but be outperformed by another forecast in times of recession. Then
a combination framework with time-varying weights would work better at forecasting throughout the business cycle than one
with stable weights. The idea of using time-varying forecast combination weights was first introduced by Granger and Newbold
(1973), and extended to a regression framework by Diebold and Pauly (1987).

This paper uses a regime switching framework to derive optimal combination weights. | use an optimization problem based on
asymmetric loss functions in deriving optimal forecast combination weights. The switching framework is based on the work of
Elliott and Timmermann (2005) however, | extend their setup by using asymmetric quadratic loss in the optimization problem.
This is an important extension, since with my setup it is possible to quantify and analyze optimal forecast biases for different
directions and levels of asymmetry in the loss function. At the same time, this chapter also extends the findings of Elliott and
Timmermann (2004). In this paper, the authors characterize the optimal combination weights for the most commonly used
alternatives to mean squared error loss, but do not include state-dependence. Thus, my main contribution is the combination
of state dependence with an asymmetric loss function, which, to my knowledge, has not been addressed in the literature.

In this paper | study a forecaster’s problem who has access to a set of individual forecasts and wants to combine them optimally
in a regime switching environment under asymmetric loss. | derive the first order conditions for an optimal linear combination
and provide a numerical procedure (akin to GMM) for computing them. | interpret the optimal weights through analytical
examples and examine how the weights depend on the model parameters, the level of asymmetry of the loss function and the
transition probabilities and starting state. | quantify the optimal forecast bias as a function of the asymmetry parameter of the
forecaster’s loss function, adding to the literature on forecast bias (see Mincer and Zarnowitz (1969), Holden and Peel (1990),
Batchelor (2007), Elliott et al. (2008), Dovern and Janssen (2017)). In the following paragraphs, | motivate my choices for using
a Markov-switching framework, asymmetric losses, and | give context on optimal biases in forecasts.

There are different methods of using time-varying weights in forecast combinations. Using rolling window regressions to de-
termine the combination weights for every forecast period is a popular and methodologically straightforward choice. Time-
varying parameter models could also be estimated using the Kalman filter. A third choice, proposed by Deutch et al. (1994) is
to determine weights based on a regime-switching model with an observable state variable. Elliott and Timmermann (2005)
compare these three methods in creating combination forecasts from surveys and time series models. The authors find that
the last method is the most accurate in terms of mean squared forecast error. Using the regime-switching model also enables
the researcher to analyze the optimal weights and forecast errors assuming different starting regimes and different transition
probabilities between regimes. This makes it possible to draw conclusions on optimal forecast biases for different economic
states.

Elliott and Timmermann (2005) derives optimal combination weights in a latent state regime switching environment. The au-
thors illustrate the result with an empirical application combining survey and time series forecasts and comparing the accuracy
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of combination forecasts based on different time-varying weighting methods. In the derivation of the optimal switching weights,
the authors assume mean squared (MSE) loss.

Mean squared loss is widely used in the literature due to the ease of computation, analytical convenience and its favorable
statistical properties’. However, its use is difficult to justify on economic grounds and likely does not capture the true behav-
ior of forecasters. The arguments against the use of symmetric loss functions go back to Granger and Newbold (1986) and
are developed in more recent works such as Christoffersen and Diebold (1996, 1997), Granger and Pesaran (2000), Elliott et al
(2005) and (2008), Patton and Timmermann (2007), Wang and Lee (2014). The use of asymmetric loss functions is based on the
idea that forecasters could be averse to ‘bad’ outcomes: low real GDP growth, high inflation, etc., and they could incorporate
this asymmetry into their forecasts. In another forecasting situation there might be different costs in overprediction versus
underprediction of sales: overprediction can lead to higher inventory holding costs, while underprediction can lead to stockout
costs, loss of reputation and revenues when the demand is too high (Elliott et al. 2008). The relative costs of overprediction
versus underprediction depend on the preferences of the firm, and it is reasonable to believe that the preferences are asym-
metric. The forecaster is likely to be aware of the asymmetric preferences (their salary could even depend on using the right -
asymmetric - loss function and producing accurate forecasts as a result), and would therefore use an asymmetric loss function
in their forecasts.

Biases in economic forecasts could also be related to asymmetric loss functions. It is well documented that survey forecasts
are frequently biased (Mincer and Zarnowitz (1969), Holden and Peel (1990), Batchelor (2007), Elliott et al. (2008), Dovern and
Janssen (2017)). The size and direction of the bias can depend on the affiliation of the professional forecaster, as well as on
the current state of the business cycle. Elliott et al. (2008) examine US Survey of Professional Forecasters (SPF) and Livingston
survey data on output growth and find that close to 30 percent of individual forecasts are biased at a 5 percent significance
level. The authors also find that on average, forecasters are more likely to underpredict growth (suggesting that the cost of
overprediction is higher than the cost of underprediction). The biases vary by the affiliation of the forecaster: academics have
almost symmetric loss functions, while banking and industry economists rely on more asymmetric loss functions (Elliott et al.
(2008)).

Recent research suggest that state dependence and asymmetric loss are potentially both at play in some economic forecasts.
Dovern and Janssen (2017) examine systematic forecast biases over the business cycle. On a panel of forecasts for the annual
real GDP growth rate in 19 advanced economies? (1990-2013), they find that on average, forecasters overestimate GDP growth.
However, there is a substantial difference between forecasts for different business cycle states. Forecasts made for recession
periods exhibit large negative forecast errors (in advance, forecasters overestimate the growth for these periods). By contrast,
forecasts for recoveries show small positive errors, while forecasts for expansions are unbiased.

As an illustration, | have reproduced Figure 1. from the paper of Dovern and Janssen (2017) using a different data set. | have
used Consensus Economics surveys for annual real GDP growth for 11 Easters European countries3, for the period between
2007 and 2019. The forecast horizons used range from 3 months to 24 months.

The figure for Eastern European economies confirms the same results as Dovern and Janssen’s example of 19 advanced coun-
tries: forecasts made for recessions exhibit large negative biases, forecasts for recoveries often underpredict growth, while
forecasts for expansions are on average unbiased (Figure 1). The differences between forecast biases made for different peri-
ods are large and significant (see Batchelor (2007) and Dovern and Janssen (2017)). Time series forecasts also frequently exhibit
biases, especially around business cycle turning points. When constructing forecast combinations, it would be beneficent to let
the weights depend on the state of the economy, as well as allow the loss function to be asymmetric. This chapter introduces
an optimal combination weighting scheme that meets these criteria.

The rest of this paper is organized as follows. Section 2 shows the theoretical setup and outlines the expected loss minimization
problem in the general case. Section 3 describes the procedure used for deriving the optimal weights numerically. Section 4

TWhen assuming MSE loss, the rational forecasts are unbiased and the forecast errors are uncorrelated with all variables in the current information
set. Therefore, rationality testing is straightforward if quadratic loss is assumed. However, as Elliott et al. (2005, 2008) point out, testing rationality
this way assumes a joint hypothesis of rationality and quadratic loss. The latter might not hold in many cases; the results of such rationality tests are
not valid for forecasts constructed using asymmetric losses.

2Dovern and Janssen (2017) use Consensus Economics surveys for the following countries: Austria, Belgium, Canada, Switzerland, Germany, Denmark,
Spain, Finland, France, Greece, Ireland, Italy, Japan, the Netherlands, Norway, Portugal, Sweden, the United Kingdom, and the United States.

3 Bulgaria, Czech Republic, Estonia, Croatia, Hungary, Latvia, Lithuania, Poland, Romania, Slovenia, Slovakia
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INTRODUCTION

Figure 1
Systematic survey forecast errors by horizon
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Notes: The figure shows estimates of the systematic forecast errors (in percentage points) as a function of the forecast horizon. The lines represent
point estimates from regressions of the forecast errors on a set of 24 dummy variables (one for each forecast horizon).

analyzes how the optimal bias and the combination weights depend on the parameters through four analytical examples with
different parametrizations. Section 5 assembles general observations from the results that could be formalized as theorems
and also outlines some possible extensions. The last section concludes.
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2 Theory

In the introduction, | have already argued for the high importance of allowing for asymmetric loss functions when combining
forecasts. In this section, | introduce the theoretical setup and solve the expected loss minimization problem in the general
case.

2.1 SETUP

t

z=1, Where

We would like to forecast y,, ; on the basis of I, = {J;11, v}

~ A~ ~ li
Yer1 = Gresr - Vmea1) (1)

is the vector of m individual forecasts. The information set includes the realized values of the target variable y, up until the cur-
rent period when the forecast is made, together with the past and current values of the m individual one-step-ahead forecasts.
The last available individual forecasts in the forecaster’s information set in t are the forecasts made in t for the t + 1 horizon.

The equation for the linear combination of forecasts is the following:

Yes1 = Wo + @' Vrpq + €41, (2)

where w, : is a constant, and @’ : is an m-vector of weights. The forecaster’s goal is to optimally combine the individual
forecasts in order to minimize her expected loss from the combined forecast. She can do this by optimizing the combination
weights wy and ' based on her specific loss function.

I assume that the joint distribution of the target y, ; and the vector of individual forecasts y,,, is driven by an unobserved state
variable, S; € (1, ..., k) that is not part of the information set; S; & /;. Conditional on the information set /; and the underlying
state S;11 = Sy41, assume that the joint distribution of the target and the vector of individual forecasts is Gaussian:

2 !
y t+1 u g, 9
Vs, YSt+1 S
~N t+1 , Y¥YSt+1 (3)
Yie+1 ”flsH.l 6Y75t+1 Zf’szﬂ

Given equation (2), assumption (3) implies that the corresponding conditional distribution of the error e, is also Gaussian
with some mean u,  and standard deviation g, o
St+1 S

Finally, I also assume (following Hamilton (1989) and Elliott and Timmermann (2005)) that the states are generated by a first
order Markov chain with the following transition probability matrix, where 7; denotes the transition probability of arriving at
state j when starting from state /:

Ty Ty Tk

T Ty Tk @)
TC—1k

Ta o Thg—1 Tk
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THEORY

Furthermore, if at time t the state of the process is s;, then the probability that the process will transition to state s, 4 in period
t + 1 will be denoted as

P(sts1lse) = T, t

Hence, 7T, is the element of the matrix (4) that corresponds to row s, and column s, ;.

2.2 THE EXPECTED LOSS FUNCTION AND THE FORECASTER’S PROBLEM

Deviating from the setup of Elliott and Timmermann (2005), | choose the more flexible asymmetric quadratic (or quad-quad®)
loss function in the forecaster’s optimization problem, instead of the symmetry-assuming MSE loss®. The loss function takes
the following form:

(1-a)e?, ife>0
le=1{" , (5)
ae’, ife<0

where 0 < a < 1. The parameter alpha in the loss function captures the asymmetry preferences of the forecaster. For
1 . . -
alpha values lower than Y negative forecast errors entail a smaller cost for the forecaster as opposed to positive forecast

errors, overprediction is preferred. For a > 3 positive errors entail smaller costs than negative errors, thus underprediction is

1. . -
preferred. a = ;s the symmetric case, the loss function reduces to the same form as the mean squared error loss.

Assuming the loss function takes the form expressed in equation 5, the posited objective is to minimize the following expected
loss formula:

k
Ellenlhsd = ) m, E{le - Qa- D1, el

Ser1=1

Iy, 5t+1}: (6)

where Le, >0 denotes the indicator function, i.e.,

1, ifest+1 >0
> T o, e, <

and e, is the (still random) value of the error e, in state s, ;.

Let us interpret the objective function in equation 6. The expectation on the left hand side is taken with respect to the condi-
tional distribution of e, given the forecaster’s information set /; and the current state s;. This is then expanded as an iterated
expectation on the right hand side. For any possible value s, of the future state, the inner expectation is with respect to the
conditional distribution of e, given I, and s.,,. This expectation is, by assumption, no longer dependent on s,, i.e., it does not
matter how the process arrives at the state s;,;. The outer expectation then averages over all possible future states, using the
transition probabilities corresponding to the current state s, as weights (these are contained in the corresponding row of the
transition matrix). This expectation, by contrast, is no longer dependent on /;, as the Markov property implies that transition
probabilities depend solely on the current state.®

To evaluate the expected loss (6) in practice, one needs to assume specific values for the transition probabilities 1
mate them based on an auxiliary model. There is a set of transition probabilities 7

5. or esti-
t+1s
+ corresponding to each possible current

St+1

4The double quadratic term refers to the type of the loss function for both negative and positive forecast errors.

5 The asymmetric quadratic loss function | use in this chapter has been studied by other authors as well. It is a special case of the family of loss functions
studied by Elliott, Komunjer and Timmermann (2005, 2008). In another paper, Elliott and Timmermann (2004) derive the optimal forecast combination
in a permanent-state environment assuming the same loss function.

5 We can summarize this discussion more formally as follows. Using the law of iterated expectations, we can write the left hand side of equation 6 as
E{L(et+ )l 5e} = E{E[L|I,, St st+1]|lt, st} = E{E[L|l,,s,+1]|sr}, where the last equality follows from the conditional independence conditions discussed
above.
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state s;. However, s, is not directly observed by the econometrician, which means that the evaluation of (6) also requires an
assumption about the current state s; or an estimate of it.

I now turn to the forecaster’s problem. The forecaster’s goal is to choose the combination weights w, and w in equation
(2) in a way that minimizes her expected loss (6). To this end, | write the value of the forecast error in state s, as e, =
,ueSH1 z,,,,, where He, and o, ., are the state-specific mean and standard deviation, respectively, and z; _ is a standard
normal random variable. Usmg equation (2) and assumption (3), these moments are given by

g,
st41

!
= — Wy — W U,
Mest+1 0 ”y St+1

y5r+1
2 _ 2 1 _ e
O, = Uvsm +w Zysmw 2w 0.,

Substituting e;,, = u, + o,
. . St+1
following expression:”

z,,,, into (6) and making the corresponding change of variables in the integral yields the

St+1

k
EL(ecllosd = ) M E(@ = Q@ = D, 50)ed, s} =

Ser1=1

k

. Z 7, olu2 + 02] - Qa— 1) Z o f (4, + 0oz, )2dF(z,), (7)

See1=1 Sep=1
Ue

where u, and g, are shorthand for K, and e, .- respectively, and F(-) is the standard normal cumulative distribution func-
tion.

The goal is to minimize (7) with respect to the constant w, and the slope coefficients (or weights) w, where these parameters
are implicit in the definition of i, and .. However, as discussed above, the expected loss objective (6) has several ‘versions’
depending on the initial state s;; there is, therefore, a corresponding set of minimizers for each possible current state. To
emphasize this dependence, | will denote the optimal weights as wg, and w;. Thus, if the econometrician’s assessment of the

current state evolves from period to period, so do the optimal weights.

I will now characterize w;, and w; as the solutions to the first order condition of the expected loss minimization problem
outlined above.

2.3 EXPECTED LOSS MINIMIZATION IN THE GENERAL CASE

Let us minimize the expected loss function in the general case (7) by deriving the corresponding first order conditions (FOCs).

Taking the partial derivative with respect to the constant wy, yields:

OE{L(ery1)I5e It} _

Owy;
k (8)
a Z 5t+1vt (”’e) - (Za - 1) Z n5r+1v J (”'e + Oe 5t+1)dF(ZSt+1) =
Se+1=1 Ser1=1

Ue

7See the detailed derivations in appendix A, equation 23.
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Substituting p, and o, with their definitions (and omitting the state and time subscripts for clarity), we can write the FOC in
the following form:

OE{L(e)|s, 1}
— - =0
0wy,

(9)

o0
Qa-1) Z T, f (uy — Wor — Wy + (0] + 0, Zyw, — 20,0 ,5) z) dF(z)| =0
S ﬂ"y*‘“’ﬁ"”"{“}%

2 I's o 20w o
gy +w; Ey(ﬂt 2w, %9

OE{L(e)]s, I}
— 777 =0
dwq;

@Yy (1, - o -t ) -

s

(10)

[oe]

Ra-1) Z 1T, J. (1, — wor — w;py + (0] + W Zyw, — 2w,0,5) 2)dF(2) [ = 0
s —uy+w0+m:;k}75

2 Ty o oo
0y+m(£ywl Zwtayy

The optimal weights wg, and w; must then satisfy equation (10).

There are m more first order conditions corresponding to the partial derivatives with respect to the individual weights w,. These
are given by:

OE{L(e)|s, 1}
— =0
ow
az T, (—/.L}A,[,Le + 5w - ayy) -

s

(11)

- Qa - 1)2 T, J- (U, + 0. 2) (—uy + ai (Zyw —0y) z) drF(z)[=0

Te

The optimal weights w;, and w; must also satisfy equation (11).

Due to the complexity of these equations, the solutions for the optimal weights cannot be given in closed form. However, it
is possible to solve these equations numerically, adopting the idea behind the well-known generalized method of moments
(GMM) estimator. | will describe this the general procedure in the next subsection. In Section 4 | will compute the optimal
weights and consequent average losses in three specific scenarios and analyze the results in detail.
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3 Numerical procedure for
computing the weights

Suppose that all the parameters in equations (10) and (11) are given except for the weights w, and w. The main difficulty in
solving the first order conditions lies in the evaluation of the integrals with respect to dF(z), especially given that the integration
limits are also dependent on the unknown weights. Let me generically represent these integrals as

b
J g(z; 8)dF(2), (12)
a
where 8 = (w,, w’)' stands for the vector of unknown weights and a and b may also depend on w.

| then evaluate the first order conditions in the following way. First, | formally eliminate the integration limits by using indicator
functions; that is, | represent the integrals fab g(z;0)dF(2) as [ g(z 0) 1,5 (2)dF(2), where the latter integral is taken over the
entire real line (i.e., from minus infinity to infinity). The two integrals are equal because the function 1, (2) is one if z falls
into the interval [a, b] and is zero otherwise.

Second, as F stands for the standard normal cdf, | can again regard these integrals as expectations over a standard normal
random variable; that is,

f 002 0)1105 (D) = EQZ O)1on @} 2~ N(O,1). (13)

Using this representation of the integrals with respect to dF(z), the first order conditions (10) and (11) can be thought of as a
set of moment conditions
E[m(z,6)]=0, j=0,..,m, (14)

where, for example,
mo(2,6) = @ ) . (1, - wo - 'ky )
- (15)
-Qa-1) Z ns{ [,uys - wy — w’u?s + (ai t 'L w-2woy) Z] . ]l[as_oo)(Z)}
s

with
—H, +wot+ o'y

as = (16)

2 ! _ I
\/O'ys +w'i;w-2w O3,

Equations (10) and (11) can be written this way because the linearity of the expectations allows it to be pulled ‘outside’ of all
the other operations.

Third, | replace the moment conditions with their ‘empirical’ counterparts using a large sample of artificial observations 7, ..., Z,,
drawn from the standard normal distribution. That is, instead of expectations, | work with averages of the form

n

1

- Z m(2,6)=0, j=0,...m. (17)
i=1

For large n, the law of large numbers guarantees %Z,Ll m;(Z;, 8) = E[m;(Z, 8)], and | can make this approximation precise by
choosing n as large as computationally feasible.

Thus, in the three steps outlined above, | have reduced the computation of the optimal weights to a standard generalized
method of moments (GMM) estimation problem, where the parameter vector 8 = (wy, w’)' is just-identified. This means that
one can use well-developed numerical procedures and readily available routines to compute the optimal forecast combination
weights for any given parametrization of the forecaster’s problem.
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4 Analytical examples

In this section, | estimate and interpret the optimal weights and average losses in four different parametrizations. The simu-
lations were carried out in order to better understand the differences between the asymmetry-allowing optimal combination
weights and the ET combination weights that are based on MSE loss. For ease of interpretation, | consider only 2 states and
2 forecasts in all cases, and a one-period forecast horizon. State 1 parameters are different in the four cases, while they are
always compared to the baseline parametrization in state 2 (state 2: unbiased forecasts, both variances are 1, forecasts are
uncorrelated).

4.1 SCENARIO 1: ONE BIASED FORECAST

Let us assume a simple data generating process of the following form:

Yer1 = Bitxt + B;tWt + €1 =fli+ 2 + €4 (18)

Where €;,, is a standard normal error term, €,4,~N(0, 1); €,,~N(0,1). The two individual forecasts that we would like to
combine are the following:

fli= Stxt
: (19)
2, = o Wy
The linear combination of the two forecasts gives the combined forecast:
f’t+1|t = wor + Wy fly + Wy f2, (20)

In the first parametrization, asymmetry is introduced by a small positive bias of forecast 1 in state 1 (see table 1 for the full
parametrization). The other forecast stays unbiased throughout (”12,51 =Upy = 0). The variances of the forecasts are equal
in both states and the two individual forecasts are uncorrelated E(x,w;) = 0,Vt. The optimal weights are derived using the
numerical procedure introduced in section 3.

| specialize the general expected loss function from equation 6 by substituting in the adoquate forms of u, and o,.

”9,51 = _(‘)0,51 - wl,sl uf1_51 = _{‘)0,51 - wl,sl 0.1

Kooy = —Wos1

2 _ 2 _ 2 20N _ .
O-e,sl - O-e,sz =2+ (wl,sl + wz,sl) 2(0‘)1,51 + wl,Sl)’

As the variances of the individual forecasts are unity and the forecasts are uncorrelated, the expected loss function and first
order conditions are not overly complicated (see appendix B). The variance-covariance matrix of the two forecasts and the
covariances between the target and the individual forecasts take the following forms:
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Table 1
Scenario 1: one biased forecast

S1 S2
ﬁil 1 ﬁiz 1
B 1 BZ 1
gt 01 B2 o
ol 1 g2 1
w0 w: o
Jﬁvl 1 Jﬁvz 1
ﬂ;l 0 u)s/Z 0
ol V2 o 7
Cov(x, w)s1 0 Cov(x, W)SZ 0
1 0 1
Ly = Oy =
0 1 1

When there are two possible Markov states, then we get two sets of optimal weights, each referring to the starting state that is
assumed to be known when making the forecast. The equation for the expected loss function and the first order conditions are
stated in appendix B. Applying the GMM-based numerical procedure to these analytical results, we get the optimal combination
weights outlined in table 2 and 3. For deriving the results in table 2, the symmetric transition probabilities from the matrix P,
were used, while for the results in table 3, the asymmetric transition probabilities from P, were used.

First, let us interpret the results of table 2. The transition probability does not depend on the starting state in this scenario,
therefore, the optimal weights are the same for each starting state. The optimal weights of the two individual forecasts, w;;
and w,, are essentially 1 (minor estimation errors occur from the GMM procedure). This is the same as their true values,
and B, from the DGP. The optimal bias is captured in wg, whose value changes as the asymmetry parameter « increases.

At @ = 0.5, the loss function is symmetric and coincides with the MSE loss. Therefore, we see that the estimated optimal
weights are exactly the same in the asymmetry-allowing case and the MSE loss-based combination (ET). w, takes the value that
offsets the bias competely, resulting in an unbiased forecast:

w, = —(forecast bias X Pr(arriving in biased state)) (212)

For lower a-s, overprediction is preferred. This is achieved in the combination forecast, by only sligthly offsetting the bias
from f1; wy is close to zero. As « increases toward 0.5, the preference for overprediction is weaker, therefore, w, increases
in absolute value, resulting in a less biased optimal combination forecast. For a-s above 0.5, underprediction is preferred, w,
offsets the bias coming from Hpy, and produces an overall positive forecast error.

Figure 2 and 3 shows the average asymmetric quadratic losses for the transition probability matrices P; and P,. The figures

depict the result of a thought experiment where a one-period forecast is made and we would like to know the expected loss for
the next period. In figure 2, the transition probability matrix P; results in a symmetric loss function that is always lower than
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the constant loss resulting from the ET optimal combination. The loss is lower for more extreme asymmetry preferences (a-s
close to 0 and 1). Again, the starting state does not influence the results.

When the transition probability matrix takes the from of P,, two different sets of optimal weights are calculated based on the
starting state. Now, the system is likely to stay in the starting state (with probability 0.9). When this is the biased state 1, w,
needs to be higher in absolute value to offset the bias. The relation in equation 21 stays true; for instance when a = 0.5, the
constant from the optimal combination needs to be —0.09 to yield an unbiased forecast (this is also the optimal w, for the ET
loss). As the asymmetry parameter changes, we can see a similar dynamic in the change of wg as in table 2: for lower a-s, the
preferred overprediction of the target variable is achieved by only partly offsetting the bias from f1, while for a-s higher than
0.5, an wy higher in absolute value is needed to produce an optimally biased combination forecast. The coefficients of f1 and

f2 are 1 throughout, hitting the true 8 coefficients from the DGP.

Table 2
Optimal weights from case 1, symmetric transition probabilities
optimal weights ET optimal weights
« starting state: s1 starting state: s2 starting state: s1 starting state: s2
Wot Wit W)t Wot W1t Wt Wot W1t Wt Wor W1t W)t
0.1 -0.010 1.000 1.000 | -0.010 0.999 1.000 -0.050 0.998 1.000 | -0.050 0.998 1.000
0.3 -0.030 0.998 1.000 | -0.030 0.998 1.000 -0.050 0.998 1.000 | -0.050 0.998 1.000
0.5 -0.050 0.998 1.000 | -0.050 0.998 1.000 -0.050 0.998 1.000 | -0.050 0.998 1.000
0.7 -0.070  0.997 1.000 | -0.070  0.998 1.000 -0.050  0.998 1.000 | -0.050  0.998 1.000
0.9 -0.090  1.000 1.000 | -0.090  1.000 1.000 -0.050  0.998 1.000 | -0.050  0.998 1.000
Table 3
Optimal weights from case 1, asymmetric transition probabilities
optimal weights ET optimal weights
« starting state: s1 starting state: s2 starting state: s1 starting state: s2
Wor Wy (CF13 Wor Wy Wat Wotr Wie Wy Wor Wie Wy
0.1 -0.050 0.998 1.000 | -0.001 1.000 1.000 -0.090 0.999 1.000 | -0.010 0.999 1.000
0.3 -0.079 0.998 1.000 | -0.005 1.000 1.000 -0.090 0.999 1.000 | -0.010 0.999 1.000
0.5 -0.090 0.999 1.000 | -0.010 0.999 1.000 -0.090 0.999 1.000 | -0.010 0.999 1.000
0.7 -0.095 0.999 1.000 | -0.021 0.998 1.000 -0.090 0.999 1.000 | -0.010 0.999 1.000
0.9 -0.104 0.997 0.998 | -0.050 0.993 1.000 -0.090 0.999 1.000 | -0.010 0.999 1.000
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Figure 2
Asymmetric qaudratic losses as a function of alpha based on parametrization with one biased forecast (s1); P=[0.5 0.5; 0.5
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Figure 3

Asymmetric qaudratic losses as a function of alpha based on parametrization with one biased forecast (s1); P=[0.9 0.1; 0.1
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4.2 SCENARIO 2: DIFFERENT VARIANCES OF INDIVIDUAL FORECASTS

In this scenario, both forecasts are unbiased throughout. The difference in the forecasts stems from the second forecast having
a higher variance in state 1 (see table 4 for full parametrization). The two individual forecasts are uncorrelated. Again, state 2
is characterized by the baseline parametrization of equal variances and no bias. The state-dependent means and variances of
the forecast error are the following:

I’Le,sl = I"'e,sz = —Wos
2 — 2 2 .
Oes1 = 3+ (Zwl,sl + (’)2,51) - 2(2(‘)1,51 + (’)2,51);
2 — 2 2 .
O-e,sz =2+ (wl,sl + wz,sl) - 2(w1.$1 + wZ,Sl)'

In this parametrization, the variance-covariance matrix of the two forecasts and the covariances between the target and the
individual forecasts are changed from the baseline to the following forms. The resulting expected loss function and first order
conditions are detailed in appendix C.

The optimal combination weights are shown in tables 5 (symmetric transition probabilities characterized by P;) and 6 (asym-
metric transition probabilities characterized by P,). It is appearent that the higher variance of f1 in s1 does not change the
optimal weights, thus the true parameters stemming from the data generating proccess, [wg, w1, w,] = [0, 1, 1] are found. At
extreme asymmetry parameters, the minor differences are due to calculation errors from the GMM procedure. When a bias
is introduced to forecast 1 in state 1 in addition to the higher variance, the optimal combination weights are the same as in
scenario 1.

4.3 SCENARIO 3: CORRELATED FORECASTS

Let us examine a parametrization with correlated individual forecasts in state 1. In state 1, f1 has an indirect effect on y, through
its correlation with f2. Similarly to the other specifications, state 2 is characterized by the baseline DGP and forecasts.

yﬁ.l =f2; + €441
til =fli+ 2+ €

Where €;,, is a standard normal error term, €,,~N(0, 1), €,,~N(0, 1).

In state 1, each individual forecast consists of a common part, f, and an additional error term:

it =f+¢,
2 =f,+n,
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where {,~N(0,1) and 1n,~N(0,0.2)

The forecast is the linear combination of the individual forecasts.

f’t+1|t = Wor + W1t fl + Wy f2,

2 1 1
29 = O-yf/ =
1 1.2 1.2
Hesi = UHesp = —Wops1

05,51 =12+ 2(1)151 + 1.2@;51 + 2(W151Ws51) — 2(W1g1 + 12W54);

2 — 2 2 .
O-e,sz =2+ (stl + (1)2'51) - 2(wl,sl + wz,sl)»

To better understand the results, assume first that there was no switching and the system stayed in s1. As f1 does not appear
in the DGP, and has a higher variance than 2, we would expect the optimal combination weights to be [wq, w,, w,] = [0,0, 1].
In the simulation of such a case, whose results are presented in table 4.3, these weights are indeed found (at very high a-s we
can see some estimation errors).

Returning to the original switching framework, let us first assume equal transition probabilities (transition probability matrix
is P;). Then the estimated optimal combination weights are those shown in table 4.3. As both forecasts are unbiased in both
states, the weights do not change with the asymmetry parameter, similarly to scenario 2. w, is zero throughout as there is no
bias to offset coming from the individual forecasts. However, the optimal weights of the two forecasts differ in this case: the
coefficient of f1 is lower (0.39) than that of f2 (0.82). The weights take values between their optimal values if the system always
stayed in state 1; [wg, w4, w,] = [0, 0, 1], and their optimal values if the system always stayed in state 2; [w,, w4, W,] = [0, 1, 1].
The estimated wj, and w;t are lower than the simple average of the above two sets of weights [0.5,1]. This is due to the
variance-minimizing objective of the forecast: the forecast with higher variance, f1, is assigned a lower combination weight.
Since f2 is positively correlated to f1, it is also intuitive in light of the variance-minimizing objective that w;t is lower than 1.

Assuming a more persistent transition probability matrix, P,, we can see from table 4.3 that the starting state matters for the
optimal weights. When the starting state is s1, where the forecasts are correlated, f1 is assigned a low weight of 0.82 that is
even lower than the probability of leaving the starting state (P;, = 0.1). w3, is slightly higher (0.92) than the probability of
staying in state 1 (P;; = 0.9).

When the starting state is s2, the optimal weights are close to (0, 1, 1), (optimal weights for a system that always stays in s2) as

the probability of arriving at state 1 is low.

4.4 SCENARIO 4: COMMON FACTOR

In this scenario, the combination forecast in state 1 is again characterized by two correlated individual forecasts. In addition
to these two forecasts, the data generating process includes a third forecast, f3, that is the common factor responsible for the
correlation between f1 and f2. As in the other examples, state 2 is the baseline parametrization (two uncorrelated, unbiased
forecasts with equal coefficients in the DGP):
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t-::—l =fl+ 12+ 31 + U
2 =+ 2+ €a

Where €, isani.i.d. error, €,,~N(0, 1). v is the idiosynchratic error from the state 1 DGP with correlated variables, v, ~N(0, 1).

In state 1, f1 and f2 consists of a common factor, f3, and an additional error term with different variances:

f]-;l =f3t+€[
fzil :f3t+nt

where {,~N(0,0.1) and 1n,~N(0,9)

The forecast is the linear combination of forecasts f1 and f2.

Vra1)t = Wor + W1 flp + W5 2,

Let us first examine the optimal weights in a constant-state system to better understand the results from the switching simula-
tion. Assume that there is no switching and the prevailing state is always s1. Then, we would expect the optimization procedure
to assign f2 lower weights than f1, due to the variance-minimizing objective.

11 1 3.1
Zy = Oy =
1 10 12
He,sl = I'le,sz = —Wos

o’ =161+ 11w?_ + 10w?

e,sl 1,51 2,51 + z(wl,sle,sl) - 2(3'10)1,51 + 120)2,51);

65,52 =2+ (wisl + w%,sl) - 2(cul,sl + wZ,sl);

Table 4.4 shows the optimal weights from the no-switching exercise®. The results are intuitive: w, is zero similarly to the other
cases where the forecasts are unbiased, and the optimal weights do not change with a. This is also likely due to the unbiased-
ness of the forecasts (this conjecture and some other general observations from the results are summarized in section 5). As
expected, f2 is assigned lower weights than f1, due to its higher variance. Still assuming a no-switching environment, if the
system stayed in state 2 throughout, the optimal weights would be [wy, w,, w,] = [0, 1, 1], as we have seen in the previous
examples.

8 Results for a-s lower than 0.3 and higher than 0.7 are truncated from table 4.4, since the numerical procedure produced large estimation errors. The
full table can be found in appendix F.
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Returning to the regime-switching environment, let us first examine the optimal weights under symmmetric transition prob-
abilities between states (P, transition probability matrix), shown in table F°. w, is zero since the forecasts are unbiased. Also
likely due to unbiasedness, the optimal weights are constant for different asymmetry parameter values. The optimal weight of
2, the forecast with the higher variance is lower than that of the other forecast. The optimal combination weights in table F
are very close to the arithmetic means of the optimal weights from the previous no-switching exercises (s1: [0, 1.9, 0.01]; s2:
[0, 1, 1]).

Table F shows the optimal weights assuming asymmetric transition probabilities (P,). When the starting state is s1, the system
is expected to stay in this state with a probability of 0.9, therefore, the optimal weights are close to the results from table 4.4.
Conversely, when the starting state is s2, the optimal weights are close to [0,1,1], as in the scenario where the system stayed in
s2 throughout.

% Results for a-s lower than 0.3 are truncated from table F due to estimation errors at these extreme values. The full table can be found in appendix F.
At a = 0.7 the outlier values are also likely due to estimation error.

19 Again, the results for @ = 0.1 are truncated due to estimation errors, see the full table in appendix F.
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Table 4
Scenario 2: one forecast has higher variance in state 1

S1 52
Bi1 1 Biz 1
ﬁ;l a ﬁiz 1
oo p* o
ot 2 o 1
w0 w20
ol 1 o2 1
Mf,l 0 M;z 0
o' V3 a7’ V2
Cov(x, w)s1 0 Cov(x, w)s2 0

Table 5

Optimal weights from case 2, symmetric transition probabilities

optimal weights

ET optimal weights

starting state: s1

starting state: s2

starting state: s1

starting state: s2

a

Wor Wy (CF13 Wor Wy Wat Wor Wie Wy Wor Wi Wy
0.1 0.000 1.000 1.000 | 0.003 1.000 0.999 0.000 1.000 1.000 | 0.000 1.000 1.000
0.3 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.5 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.7 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.9 0.000 1.000 1.000 | -0.004 1.000 0.999 0.000 1.000 1.000 | 0.000 1.000 1.000
Table 6
Optimal weights from case 2, asymmetric transition probabilities

optimal weights ET optimal weights

« starting state: s1 starting state: s2 starting state: s1 starting state: s2

Woy (T (CF13 Wor Wy Wat Wot Wit Wy Wor Wi Woy
0.1 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.3 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.5 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.7 0.000 1.000 1.000 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
0.9 -0.008 1.002 1.002 | 0.000 1.000 1.000 0.000 1.000 1.000 | 0.000 1.000 1.000
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Table 7

Scenario 3: correlated forecasts

S1 Sy
B 1 B2 1
B 1 By 1
oo B2 o
o V2 o2 1
wy 0 Ky 0
aivl 1 Jj,z 1
ﬂ;l 0 II;Z 0
ol 3 o 2
Cov(x, w)Sl 0 Cov(x, W)S2 0

Table 8

Optimal weights from case 3, only one state (s1)

optimal weights

starting state: s1

a
Wot Wit Wt
0.1 0.000 0.000 1.000
0.3 0.000 0.000 1.000
0.5 0.000 0.000 1.000
0.7 0.000 0.000 1.000
0.9 -0.052 -0.226 1.379

Table 9

Optimal weights from case 3, symmetric transition probabilities

optimal weights

ET optimal weights

starting state: s1

starting state: s2

starting state: s1

starting state: s2

a

Wot Wyt Wt Wot Wyt Wt Wot (G, Wt Wot Wit Wt
0.1 -0.010 0.392 0.821 | 0.000 0.393 0.821 0.000 0.393 0.821 | 0.000 0.393 0.821
0.3 -0.002 0.393 0.821 | 0.001 0.393 0.821 0.000 0.393 0.821 | 0.000 0.393 0.821
0.5 0.000 0.393 0.821 | 0.000 0.393 0.821 0.000 0.393 0.821 | 0.000 0.393 0.821
0.7 -0.001 0.393 0.821 | -0.006 0.393 0.821 0.000 0.393 0.821 | 0.000 0.393 0.821
0.9 -0.007 0.393 0.821 | -0.017 0.395 0.821 0.000 0.393 0.821 | 0.000 0.393 0.821
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Table 10
Optimal weights from case 3, asymmetric transition probabilities
optimal weights ET optimal weights

“ starting state: s1 starting state: s2 starting state: s1 starting state: s2

Wot Wit W)t Wot W1t Wt Wot w1t Wt Wot w1t W)t
0.1 0.001 0.083 0.937 | 0.005 0.824 0.918 0.000 0.082 0.937 | 0.000 0.826 0.919
0.3 0.001 0.083 0.937 | -0.001 0.826 0.919 0.000 0.082 0.937 | 0.000 0.826 0.919
0.5 0.000 0.082 0.937 | 0.000 0.826 0.919 0.000 0.082 0.937 | 0.000 0.826 0.919
0.7 0.000 0.082 0.937 | 0.001 0.826 0.919 0.000 0.082 0.937 | 0.000 0.826 0.919
0.9 -0.079 0.115 0.929 | -0.005 0.824 0.918 0.000 0.082 0.937 | 0.000 0.826 0.919
Table 11

Scenario 2: one forecast has higher variance in state 1

S1 S2

Bil 1 Biz 1

B;l 1 B;Z 1

B o BZ o

wy 0 uy 0

0;11 Vi1 0;12 1

wy 0 u; 0

0;21 V10 0;22 1

w0 ui 0

oy 1 0;32 1

#;1 0 “;2 0

o' V161 a7’ V2

Cov(x, w)s1 0 Cov(x, w)s2 0
Table 12
Optimal weights from case 4, only one state (s1)
optimal weights
starting state: s1
a
Wor W1 Wt

0.3 0.000 1.900 1.010
0.5 0.000 1.900 1.010
0.7 0.000 1.900 1.010
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Table 13

Optimal weights from case 4, symmetric transition probabilities

optimal weights

ET optimal weights

“ starting state: s1 starting state: s2 starting state: s1 starting state: s2

Wot Wit W)t Wot W1t Wt Wot w1t Wt Wot w1t W)t
0.3 -0.001 1.452 1.050 | -0.001 1.452 1.050 0.000 1.452 1.050 | 0.000 1.452 1.050
0.5 0.000 1.452 1.050 | 0.000 1.452 1.050 0.000 1.452 1.050 | 0.000 1.452 1.050
0.7 0.089 0.490 1.162 | 0.090 0.481 1.167 0.000 1.452 1.050 | 0.000 1.452 1.050
0.9 0.008 1.449 1.050 | 0.098 0.479 1.176 0.000 1.452 1.050 | 0.000 1.452 1.050
Table 14
Optimal weights from case 4, asymmetric transition probabilities

optimal weights ET optimal weights

o starting state: s1 starting state: s2 starting state: s1 starting state: s2

Wot Wit Wor Wot Wit W)t Wor Wit Wyt Wot Wit Wyt
0.3 0.001 1.810 1.019 | -0.001 1.094 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
0.5 0.000 1.810 1.019 | 0.000 1.094 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
0.7 0.001 1.810 1.019 | 0.000 1.094 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
0.9 0.000 1.810 1.019 | -0.002 1.095 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
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5 Conjectures

In this section | assemble general observations from section 4 that could be formalized as theorems given further evidence.

If the individual forecasts are unbiased, the optimal combination weights do not depend on the loss function’s asymmetry
parameter. In case 1, we have seen that the constant term in the forecast combination, w, changed as a increased.
However, in the other three scenarios, the optimal weights were constant despite changing asymmetry preferences. In
scenarios 2 through 4, both forecasts were unbiased, only their variances and covariance changed. When cases 1 and 2
were combined (f1 was biased and had higher variance in s1), the resulting optimal weights were identical to the results
from case 1; again, the optimal bias captured by w, was different for different a-s.

If one of the individual forecasts are biased, the bias is adjusted for through w,, the constant in the combination. The
optimal combination weight of the biased individual forecast is its true weight from the data generating process (conjecture
from scenario 1).

If the individual forecasts are uncorrelated and unbiased, the difference in their variances does not lead to differences in
their optimal combination weights. In case 2, we have seen that for such parametrization, the forecasts were assigned
their true coefficients from the DGP as combination weights.

If f1 and 2 are correlated and have different variances, then the variance-minimization objective is taken into account in
estimating their optimal weights. The individual forecast with higher variance is assigned a lower weight.
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6 Conclusion

This paper uses a regime switching framework and assumes asymmetric quadratic loss function to derive the optimal combina-
tion weights of individual forecasts. The switching framework is based on the paper of Elliott and Timmermann (2005), however
| extend their setup by using asymmetric quadratic loss in the optimization problem. This is an important extension, since with
my setup it is possible to quantify and analyze optimal forecast biases for different directions and levels of asymmetry in the
loss function, contributing to the literature on rational forecast bias.

After introducing the expected loss function and first order conditions in the general case, | present the numerical procedure
used to calculate the optimal weights in specific parametrizations. The optimal forecast combination weights are calculated
in four scenarios exhibiting different bias, variance and covariance properties between the individual forecasts. The general
observations from these examples are summerized in section 5. The most important conjecture is that assuming an asymmetric
quadratic loss function and regime switching, the optimal combination weights depend on the asymmetry parameter only in the
case when one of the forecasts are biased. In this case, for asymmetric preferences, the average loss based on the asymmetric
quadratic loss function strongly dominates the MSE-based average loss.

If the individual forecasts are unbiased and only their variances differ (in both uncorrelated and correlated scenarios), then the
optimal weights resulting from the asymmetric loss function are the same as those resulting from the mean squared loss. The

optimal weights are independent from the asymmetry parameter.

In future work, conducting simulations calibrated to the real economy and analyzing the performance of the optimal forecast
combinations introduced here might prove important.
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Appendix A Derivation of the general
expected loss function

In this appendix, | show the derivation of the general expected loss function in equation 7 by substituting e, = u, +
St+1

O-estﬂ 251+1 :
The forecaster needs to minimize the following expected loss:

k
ElL(ecrlloSenn) = ) o E(((@ = Q@ = D1g_50)(€2, )i} > min (22)

Ser1=1

e5r+1

For simplifying notation, | am going to remove the s, subscripts from e, for the following equations: e.g. 1, means u, .
St+1

1 " Heg,

Note that z, = is the standardized forecast error. £[z; ] = 0; E[ziﬂ] = 1 Taking the expected value into parts:

est+1

k
EL(eonlhsun} = ) o, (@ - Qa = D1, soled, ]} = (23)

Se1=1

k k
= Z T[stﬂ,t a E[Hﬁ + O-gzsz,ﬂ + Z”eo-ezstﬂ] - (2‘1 - 1) Z T[srﬂ,tE[]- >0 eiﬂ] =

Est+1
Ser1=1 St+1=1

E(Z,,,)=1; E(Zsle)=0

k [
= D M @ EE 02 - Qa1 Y 7, [ € dRCe,) =
Se41=1 Se+1=1 0

changing variables in the irlltegral

k 00
2
= @ ) m il - Qe Y m [ o, R,
_He

Ser1=1 Ser1=1
Oe
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Appendix B Equations for special
case 1l

In this specification, f1 has an upward bias of 0.1 on state 1 (see table 1 and equations 10-12 for full specification). The expected
loss takes the following form:

E{L(e)|l,s1} = a[Pyy(u2, + 02 ,) + Pra(ul, + 02 ,)]-

~ Q=P [ G+ 0end) D + 21y [ (o + 002D | =
Hes1 _Hes2

Tes1 Te,s2

2
=a {Pll [(_wo,sl - Wig uf1,51) + (2 + (a)isl + a)g,sl) - 2((‘)1,51 + (‘)Z,sl))]+

2
Py [(~woa) + 2+ (@I + W2 ,) = 2(Wp + W3]}~

- Qa-1)|Py; f (—‘Uo,s1 Wi Uyt
w0,s1+W1,s1 Kfy 51

JZ+(wiﬂ+w%v51)*2(w1,si+wz,s1)

2
+ \/ 2+ (Wi + w5 y) = 2(w + wm)z> dF(2)+

o0

2
+P, | (o1 + J 2+ (@2, + W2,) - 2y + 05,12 dFC)
0,51

2 2
\/2+(w1‘51+w2,51)—2(w1,51+wz,51)

(24)

When the starting state is assumed to be s2, we get a similar expected loss function to equation 24, but the transition probailities
P,, and P,, are used in place of P;; and P;,. When all elements of the transition probability matrix are 0.5, the two sets of
weights are equal.
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Minimizing the expected loss in equation 24 yields the following first order conditions:

OE{L(e)|s, I} _
dw, 0

a [P11(‘Uo,s1 + Wil ) + P12(wo,s1)] -

—Qa-1){Pu f Wos1+ Wie1 By g — JZ + (‘Uisl + wisl) — 2w + W) ZdF(2) |+

wo,s1+®W1,s1 K51

(25)

2 2
[l g +0d Dmaerarere)

P1, J. Wos1 — JZ + (wisl + “-’%,51) = 2(wy51 + Wy ) 2dF(2)

@051

J2+(wi51+w%v51)—2(w1,51+wz,s1)

The optimal weights for the two individual forecasts, w; and w, are determined by solving first order conditions 26 and 27:

OE{L(e)|s, I}
il Sl e AT R
awl,sl

a [Pll[(wo,sl + wl,slﬂﬂ,ﬂ)ﬂﬂ,sl + Wys — 1] + Plz(w1,51 - 1)] -

1
- (Za - 1) P11 f Cs1 <_Mf1,51 + 2(2 + (wisl + w§,s1) - 2((‘)1,51 + (1)2_51)) (wl,sl - 1)) dF(Z) +

0,51 +W1,51 Kfl 51

2 2
J2+(w1,51+w2,51)—2(w1,51+wz,s1)

-1
Py, f Cs2 (Z (2 + (‘Uisl + “’%,51) — 2wy + wZ,sl)) (w5 — 1)) dF(2)

@o,s1

2 2
J2+(w1’51+w2,51)—2(w1,s1+w2,51)

(26)

where

— 2 2
Cs1 = Wos1 + W11 I’l'ﬂ,sl - \/2 + (stl + wz,sl) - 2(0)1,51 + wZ,sl)

Csp = Wos1 — \/2 + (wisl + w%,sl) - 2(0)1‘51 + w2'51)
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APPENDIX B EQUATIONS FOR SPECIAL CASE 1

OE{L(e)|s, I}
— " =0
awz,sl

a [Pll(wz,sl — 1)+ Pp(wye — 1)] -

-1
- Qa-1){pry, f Ca (z (2+ (@2 + 02,) = 2@ + 030)) (@0 - 1))dF(z) +

0,51+ W1,s1 Kfy 51

(27)

J2+(¢ui51 +w%v51)—2(w1,51 +wz,s1)

P f Cs2 (Z (2 + (wisl + w;sl) = 2wy + wz,sl)) (w51 = 1)) dF(2)

@051

2 2
J2+(w1}51+wz,51)—2(w1,51+wz,s1)

where

— 2 2
Cs1 = Wos1 + Wi ”‘fl,sl - \/2 + (wl,sl + (‘)2,51) - 2((‘)1,51 + (‘)Z,sl)

Csp = Wos1 — \/2 + (wisl + w%’_ﬂ) - 2((’Jl,sl + wZ,sl)

When starting from s2, the transition probabilities in the above equations change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respectively.
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Appendix C Equations for special
case 2

In this specification, f1 has an higher variance in state 1 (see table 4 and the setup in section 4.2 for a full specification). The
expected loss takes the following form:

E{L(e)|l,s1} = a[Pyy(u2, + 02 ,) + Pra(ul, + 02 ,)]-

[>e] [>e]
2 2
~ Q=P [ G+ 0end) D + 21y [ (o + 002D | =
Hes1 _Hes2
_?,51 Te,s2

2
= a{Pul(-won)’ + B+ Qul, + l,) = 2Qwyq + W)+

2
Py [(~woa) + 2+ (@I + W2 ,) = 2(Wp + W3]}~

[oe]

- QRa-1)|Py f (_wo,51+

@0,51

Jree? 40 )-2eeyatera)

2
+\/3 +Qwi, +wl) —2Qwyg + wz,sl)z) dF(2)+

(o]

2
+P1, f (—wos + \/2 + (wisl + w%,sl) — 2(w151 + Wy1)2) dF(2)

@0,s1

2 2
J2+(w1'51 W) 1)-2(W1,51+®2,51)

(28)

When the starting state is assumed to be s2, we get a similar expected loss function to equation 28, but the transition probailities
P,, and P,, are used in place of P;; and P;,. When all elements of the transition probability matrix are 0.5, the two sets of
weights are equal.
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APPENDIX C EQUATIONS FOR SPECIAL CASE 2

Minimizing the expected loss in equation 28 yields the following first order conditions:

IE(L(e)|s, 1}
— =0
0w,
a [P11(‘Uo,sl) + P12(wo,51)] -

[oe]

- Qa-1){Py, f Wos1 — J3 + (Zwis1 + wisl) —2Qwiq + Wyq) zdFD) |+ 29)
0,51

Jree? 40 )-2Gergrens)

Py | Wost — J 2+ (@ + 0,) = 2wr + Wg) 2 dFE)

@0,51

J2+(w§;1+w§v51)—2(w1;1+wz,51)
The optimal weights for the two individual forecasts, w; and w, are determined by solving first order conditions 26 and 30:

OE{L(e)|s, I}
— " =0
awl,sl
a [Pu [20)1,51 -2]+ Plz(wl,sl - 1)] -

[oe]

-1
- Qa-1{r, f € (z (3+ w2, +wl,) = 2Quig + 050)) Qe - 2)) dF(2) |+ )

@0,51

J3+(2miﬂ+w§v51)—2(2‘01,51+("2,51)

P1 f Cs2 (Z (2 + (a’isl + wisl) - 2wy + wz,sl)) (w161 — 1)) dF(2)
@0,51

2 2
@l vl Dmaen s rore)

where

Cs1 = Wos1 — J3 + (Zwisl + w%,sl) —2Qw s + wyq)

Csp = Wosp — \/2 + (wisl + “’%,51) — 2wy + Wy1)
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OE{L(e)ls, I}
i A RS
0wy
a [Pll(w2,sl =1+ Pp(wys — 1)] -

-1
- Qa-11pr, f u (z (3+ i, +03,) = 2Qui + @20))  (Wg1 = 1)) dF(z) |+ o1

@051

J3+(2misl+m%v51)—2(2m1v51+m2'51)

-1
P f Cs2 <Z (2 + (wisl + w;sl) - 2wy + wz,sl)) (w51 — 1)) dF(2)

@0,51

2 2
J2+(w1,51 05 ) "2(w1s1+w2s1)

where

Cs1 = Wos1 — J3 + (Zwisl + w%,sl) —2Qw 5 + W)

Csp = Wos1 — \/2 + (wisl + w%,sl) - 2(0)1‘51 + w2'51)

When starting from s2, the transition probabilities in the above equations change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respectively.
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Appendix D Equations for special
case 3

DGP:
y=f2+e

forecast:
V= wy+ wifl + w,f2

fl=f+ef=f+v

Cov(f1,f2) = Var(f) + Cov(e,v) =1

The expected loss takes the following form:
E{L(e)|I'51} = a[Pll(”’;sl + 0-;51) + PlZ(”ész + 0-5'52)]_

o0 o0
2 2
~ Q=P [ e+ 0end D + 21y [ (o + 002D | =
_Hes1 _Hes2
Te,sl Oe,s2

2
= a{Pn[(—wo_sl) +12 4202 + 1207, + 2015051 — 2(W1s + 120,4))]+

2
Py [(~woa) + 2+ (@I + W2,) = 2(W + W3]}~

[oe]

- Qa-1)|Py f (_w0,51+

@0,51

2 2
J1.2+2m1v51 +1'Zw2,sl+2m1:51 w251 —2(w1,51 12w 51

2
+J1.2 +2w + 12w + 20 Wy — 2(wyg + 1.2wmz> dF(2)+

2,51

2
+Py, f (—wo,ﬂ + J 2+ (Wi, + w3 ,) = 2(wy g + Wy1)2) dF(2)

0,51

2 2
J2+(w1,51 w3 ) "2(w1s1twos1)

(32)

(33)

(34)

(35)

(36)

When the starting state is assumed to be s2, we get a similar expected loss function to equation 36, but the transition probailities
P,; and P,, are used in place of P;; and P;,. When all elements of the transition probability matrix are 0.5, the two sets of

weights are equal.
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Minimizing the expected loss in equation 36 yields the following first order conditions:

E(L(e)ls, I}
dw, 0
a [Pll(wo,sl) + PlZ(wO,sl)] -

—QRa-1)4Py Wos1~
@0,51

J(1'2+2wisl +1.Zm§'51 +2071 51 W),51~2(@1,51+12w) 51) (37)

- J 124207 + 1205 ) + 2015wy — 2(W1 g + 1.20,4) 2dF(2) | +

P1, f Wos1 — \/2 + (‘Uisl + (U%,sl) — 2wy + wy5) 2dF(2)

@o,s51

J”(“’iﬂ +w§'51)—2(w1,51 +wz,s1)

The optimal weights for the two individual forecasts, w; and w, are determined by solving first order conditions 38 and 39:

OE{L(e)|s, I} 0
0wy 5
a [Pll(zwl,sl + Wy — 1)+ Plz(wl,sl - 1)] -

8

-1
—Qa-1){P, Cal <z (1242002, + 1202, + 201000 = 2(W1 + 120550)) X

@0,51

2 2
J1.2+2wl‘51+1.ZwZ'S1 +2wq 51 w51 —2(w1,51+12w351)

XQ2Wyg + Wy — 1)) dF(D)] +

-1
P1, f Cs2 (Z (2 + (‘Uisl + w%,sl) —2(wy5 + wz,s1)) (w161 — 1)) dr(2)

©o,s51

2 2
J2+(w1,51 w5 1) 72@151+®251)

(38)

where

2
1’51 + 1.2(1)2‘51 + zwl’slwzjsl - 2((1)1,51 + 1.2(1)2‘51)

[ 0.)0’51 - \/1.2 + 2(1)2

Csp = Wos1 — \/2 + (wisl + wg'sl) - 2((")1,51 + wZ,sl)
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APPENDIX D EQUATIONS FOR SPECIAL CASE 3

OE{L(e)|s, 1} _ 0
0wy
a [P11(w1,51 +12w55 — 1.2) + Py (wy6 — 1)] -

-1
+ 1.2(u§‘51 + 2w Wy — 2(Wr g + 1.2w2,51)) X

- (Z(X - 1) P11 CSl (Z (1.2 + Zwisl

@051

J1.2+2misl+1.2misl 201,51 W61 ~2(W1 51 +12w7 51)

X(wyg + 12w, — 1.2)) dF(2)] +

" (wg1 1)) dF(2)

P, j Cs2 (Z (2 + (wisl + “’%,51) —2(wy 5 + wZ,sl))

@0,s1

2 2
J2+(w1,$1 w3 ) "2(w1s1twys1)

(39)

where

€1 = Woe — J 1242w} ) + 1205 | + 2014wy — 2(W1 + 1.20,5)

Csp = Wos1 — \/2 + (wisl + wg,sl) — 2(wy5 + Wa1)

When starting from s2, the transition probabilities in the above equations change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respectively.
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Appendix E Equations for special

case 4

DGP:
y=fl+R+f3+e

forecast:
V= wy+ wifl + w,f2

fl=f3+¢€
2=3+v

Cov(fl,f2) = Var(f3) + Cov(e,v) = 1
Cov(y,f1) = Var(f1) + Cov(f1,f2) + Cov(f1,f3) = 1.1+ 1+ 1= 3.1
Cov(y,f2) = Var(fl) + Cov(f1,f2) + Cov(f2,f3) =10+ 1+1 =12

The expected loss takes the following form:

E{L(e)|l,$1} = a[Pn(Mésl + 0-3'51) + PlZ(.u';sz + 03_52)]_

o0 o0
2 2
~ Q=P [ e+ 0end D + 21 [ (o + 022D | =
_ Hest _Hes2
Te,sl Te,s2

2
=a {Pu[(—wo‘sl) +(16.1 + (L1wi; + 2w Wy + 10w5 1) = 231wy g + 12w,5))]+

2
P [(~wos) + @+ (@3, + W2,) = 2(W1 + W3))]}

[oe]

—Qa-1)|Py f (_w0,51+

@0,51

J15.1+(1.1mi51 201,51 W51 +10w%151)—2(3.1m1'51 +12w) 1)

2

+ J 16.1 + (11wl + 201 Wy + 10w3 1) = 231wy g + 12wm)z> drF(2)+

2
+Py, f (—wo,ﬂ + J 2+ (i, + w3 ) — 2(Wie + Ws1)2) dF(z)]

@o,s1

2 2
JZ*‘(‘ULQ+w2‘51)—2(“’1,51+“’2,$1)
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APPENDIX E EQUATIONS FOR SPECIAL CASE 4

(45)

When the starting state is assumed to be s2, we get a similar expected loss function to equation 45, but the transition probailities
P,, and P,, are used in place of P;; and P;,. When all elements of the transition probability matrix are 0.5, the two sets of
weights are equal.

Minimizing the expected loss in equation 45 yields the following first order conditions:

OEL(Os) _
dw,
a [P11(w0,51) + PlZ(wO,sl)] -

—QRa-1)4Py Wo,s1—
w,s1

\/(16.1+(1.1a)i51+2w1v51 w2v51+10m%'51)—2(3,1&11'51 +12w)51)) (46)

- J 16.1+ (11wl + 2014wy + 1003 ) = 2(3.1wyy + 12w,4) 2dF(2) [+

P1 f Wos1 ~ \/2 + (Wi + i) = 2(wyg + wys) 2 dF(2)

@0,51

J2+(wijl+w§,51)—2(w1,51+wz,51)

The optimal weights for the two individual forecasts, w, and w, are determined by solving first order conditions 47 and 48:

GEL(Os) _
0wy 5
a [Pll(l-lwl,sl + Wy —3.1) + Pp(Wys — 1)] -

o0
- Qa-1){Pr, f ca (2(16.1+ (L1037, + 20100y + 1003,))—
0,51
J1s.1+(1.1wisl+zw1r$1wzyﬂ+1ow§n)—z(3.1w1,51+12m2,51) (47)

-1
—2(3.1015 +12051)) (Glwyatera-30) dFE)] +

Py, f Cs2 (Z (2 + (‘Uisl + w%_sl) —2(wys + a’z,n))
0,51

J2+(misl+m§,sl)_2(w 1s1+®2,51)

(w16 — 1)) dF(2)

where

€ = Wosy — J 16.1+ (L1wi ) + 2015 Wy + 1003 ) — 231wy + 12w,5)

Cs) = Wos1 — \/2 + (wi,sl + wg.sl) - 2(0)1’51 + wZ'Sl)
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QEL@Is ) _
awz,sl
a [Pll(wl,sl + 10wy — 12) + Plz(wZ,sl - 1)] -

- Qa-1)4Py, ca (2(161 + (1102, + 201w, + 1002,))—

@o,s1

\/15'“’(1'1“’%,51 +2w1}51w2}51+10m%y$1)—2(3.1m1}51+12mz’51) (48)

-1
—2(3.10151 + 1201)) (@4+100,,4-12) ) dF2)| +

1
P1 f Cs2 (Z (2 + (wisl + w%_sl) —2(wy5 + wz,sl)) (w51 = 1)) dr(2)

@o,s1

2 2
J2+(w1’51+w2,51)—2(w1,51+wz,51)

where

Cs1 = 0)0,51 - \/16.1 + (1.1(‘)%’51 + 2(01‘510)2’51 + 10(()%‘51) - 2(3.1(1)1’51 + 12&)2'51)

Csp = Wos1 — \/2 + (wisl + w%,sl) — 2(W151 + Wos1)

When starting from s2, the transition probabilities in the above equations change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respectively.
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Appendix F Optimal weights for case

4: full tables

Table 15

Optimal weights from case 4, only one state (s1)

optimal weights

starting state: s1

a
Wot Wyt Wat
0.1 0.083 0.517 1.171
0.3 0.000 1.900 1.010
0.5 0.000 1.900 1.010
0.7 0.000 1.900 1.010
0.9 0.113 0.444 1.184

Table 16

Optimal weights from case 4, symmetric transition probabilities

optimal weights

ET optimal weights

starting state: s1

starting state: s2

starting state: s1

starting state: s2

a

Woy (I (CF13 Wor Wy Wat Wot Wit Wy Wor Wi Woy
0.1 0.066 0.517 1.146 | 0.105 0.518 1.157 0.000 1.452 1.050 | 0.000 1.452 1.050
0.3 -0.001 1.452 1.050 | -0.001 1.452 1.050 0.000 1.452 1.050 | 0.000 1.452 1.050
0.5 0.000 1.452 1.050 | 0.000 1.452 1.050 0.000 1.452 1.050 | 0.000 1.452 1.050
0.7 0.089 0.490 1.162 | 0.090 0.481 1.167 0.000 1.452 1.050 | 0.000 1.452 1.050
0.9 0.008 1.449 1.050 | 0.098 0.479 1.176 0.000 1.452 1.050 | 0.000 1.452 1.050
Table 17
Optimal weights from case 4, asymmetric transition probabilities

optimal weights ET optimal weights

o starting state: s1 starting state: s2 starting state: s1 starting state: s2

Wor Wy (CF13 Wor Wyt Wt Wor Wi Wy Wor Wir Wy
0.1 0.058 0.517 1.167 | -0.001 1.094 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
0.3 0.001 1.810 1.019 | -0.001 1.094 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
0.5 0.000 1.810 1.019 | 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.7 0.001 1.810 1.019 | 0.000 1.094 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
0.9 0.000 1.810 1.019 | -0.002 1.095 1.048 0.000 1.810 1.019 | 0.000 1.094 1.048
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